

The Mathematics of Understanding Disease

Suzanne Lenhart, Associate Director for Education, Outreach & Diversity
Kelly Sturner, Education & Outreach Coordinator
Jennifer Richards, Hands On

US Department of Homeland Security

By the end of this module, you will ...

- Understand how mathematicians and biologists can build mathematical models to simulate disease outbreaks.
- Use real world health data to learn and share something you choose about malaria.

How can we quantify how fast a disease spreads?

Basic Reproductive Number = R_o

- Expected number of secondary cases produced by a single infection in a completely susceptible population.
- If R_o > 1, disease spreads

R₀ for some infectious diseases

- Measles 12-18
- Mumps 4-7
- HIV/AIDS 2-5
- Influenza 2-3

Outbreak in a Cup: Set Up

Set up the Initial Conditions:

20 red beans1 white bean

Outbreak in a Cup

- 1. Without looking in the cup, a student from the group selects 2 beans from the cup.
- 2. If both beans are the same color, simply return the beans.
- 3. If one bean is red and the other white, remove the red bean and return 2 white beans to the cup.
- 4. At each time step, <u>record</u> the event that occurs: either no change or a new infection.
- 5. Repeat the process until told to stop.

Share!

- Did groups show different patterns in how the outbreaks occurred? Why or why not?
- How is this disease model similar to what happens in the real world?
- What aspects could we add to modify our simple model?
- What would you estimate is the R₀ of this disease?

What do we mean by a Mathematical Model?

Some ways to add to this model ...

Can you think of more?
How would you represent them?
How could you represent these with math?

What is Malaria?

Components involved in malaria:

Parasite: Agent that causes the disease

<u>Human</u>: Host (suffers from the disease)

Mosquito: Vector that transmits the disease from

human to human

Vector-borne disease

Cause: Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium ovale

Plasmodium falciparum is the most dangerous species

Transmission: Female mosquito

Male and female mosquitoes feed on nectar and plant juice

Female mosquitoes need blood for reproduction

GAP WORLD

- Gapminder is a free data exploration and visualization tool
- Lots of world data from sources such as WHO, FAO, others are loaded into it
- Use it to find your own interesting trends

Getting Started

Watch the introductory video:

http://www.gapminder.org/videos/200-years-that-changed-the-world-bc/

- Open Gapminder World
- Check out the tutorial on the next slide (or click "How to Use")
- Use the spreadsheet to start thinking about malaria

Share Your Findings

Effects of Malaria

- Effects range from mild to fatal, including cerebral malaria
- About 1.24 million deaths in 2010 (Murray et al. 2012)
- In Africa, a child dies every 45 seconds of Malaria
- Malaria prevalence is high in developing countries due to: poverty,

human behavior,

poor sanitation,

inadequate drainage,

drug resistance, etc.

- Malaria has a negative impact on economic growth.
- People moving from regions without malaria to regions where it is present are more at risk

For This Module & More ...

- Website: www.nimbios.org
- Sign up for our bimonthly email newsletter
- Check our blog

Acknowledgements

Disease modeling activity adapted from:

 Jungck, J.R., Gaff, H. and A.E. Weisstein. 2010. Mathematical Manipulative Models: In Defense of "Beanbag Biology". CBE-Life Sciences 9(3): 201-211.

Slides on Malaria disease adapted with permission from:

Dr. Calistus Ngonghala, NIMBioS postdoctoral researcher

And for the excellent data tool, video, tutorial resources:

Dr. Hans Rosling and <u>www.gapminder.org</u>

This module developed and piloted for:

Tennessee Junior Science and Humanities Symposium 2012

