







US Department of Homeland Security



#### Goals:

- Define Predator and Prey in relation to soil ecology
- Define a mathematical model and identify some examples when one is useful
- Create a hypothesis
- Explain the basics behind the given simple Predator-Prey Relationship Model
- Graph the results of the given model
- Use your results to support or refute your hypothesis





# Predators & Prey

Predator: an organism that hunts, kills and eats other organisms (prey) to survive

Prey: an organism hunted and taken as food





### In the Soil ....



Predation happens on a variety of scales

Source: TIEE (ESA)

"Where the telescope ends, the microscope begins. Which of the two has the grander view?" -- Victor Hugo





# Classic Predator-Prey



- Canadian lynxes and hares
- Fur trapping data
- Controversial!
- Theoretically you'd expect prey to peak before predators every time
- Let's get help from a model!





# Do these models look helpful?











So what do we mean by a



### You're a Modeler!

- Have you ever calculated how much gas it's going to take you to get somewhere?
- Have you ever estimated how long it'll take you to save up for something?
- Picked the best line at the grocery store?
- Others?







### **Brace Yourself for Math!**

(Trust Me, You Can Do It!)







# What do we mean by a Mathematical Model?





# Soil Biologists Use Models

- Nutrient cycling
- Decomposition
- Carbon sequestration
- Predator-Prey
- Host-parasite
- Soil formation/erosion







### Some Kinds of Models

- Stochastic Model: Has randomness!
- Discrete Model: No randomness
- Theoretical Model: for explaining observed phenomena
- <u>Deterministic Model</u>: for predicting events in time





# **Theoretical Predator-Prey**



#### How did they do it?





#### Terms:

N<sub>n</sub> Your prey population at the moment (time step n)





#### Terms:

N<sub>n</sub> Your prey population at the moment (time step n)

N<sub>n+1</sub> Your prey population at the next time step





#### Terms:

N<sub>n</sub> Your prey population at the moment (time step n)

N<sub>n+1</sub> Your prey population at the next time step

R The prey population's growth rate





#### Terms:

N<sub>n</sub> Your prey population at the moment (time step n)

N<sub>n+1</sub> Your prey population at the next time step

R The prey population's growth rate

The prey's carrying capacity





#### Terms:

N<sub>n</sub> Your prey population at the moment (time step n)

N<sub>n+1</sub> Your prey population at the next time step

R The prey population's growth rate

The prey's carrying capacity

The predator's efficiency in nabbing prey





#### Terms:

N<sub>n</sub> Your prey population at the moment (time step n)

N<sub>n+1</sub> Your prey population at the next time step

R The prey population's growth rate

The prey's carrying capacity

The predator's efficiency in nabbing prey

Pn Your predator population





#### Terms:

Nn Your prey population at the moment (time step n)

 $N_{n+1}$  Your prey population at the next time step

R The prey population's growth rate

The prey's carrying capacity

The predator's efficiency in nabbing prey

Pn Your predator population

The predator's efficiency in using prey to reproduce





# How Do You Expect These to Relate?

- If the prey population growth rate is positive, what do you expect will happen to the population of prey over time?
- As the prey population reaches its carrying capacity, what do you expect will happen to the prey population?
- As the predator's efficiency in getting prey goes up, what do you expect will happen to the prey population?
- As the predator's population goes up, what do you expect will happen to the prey population?
- As the prey population goes up, what do you expect will happen to the predator population?
- As the predator's efficiency in using energy it gets from prey to reproduce goes up, what would happen to the prey population?





# How Do You Expect These to Relate?

- If the prey population growth rate is positive, what do you expect will happen to the population of prey over time? Prey population goes up.
- As the prey population reaches its carrying capacity, what do you expect will happen to the prey population? Prey growth slows down.
- As the predator's efficiency in getting prey goes up, what do you expect will happen to the prey population? Prey population goes down.
- As the predator's population goes up, what do you expect will happen to the prey population? Prey population slows down or goes down.
- As the prey population goes up, what do you expect will happen to the predator population? Predator population goes up.
- As the predator's efficiency in using energy it gets from prey to reproduce goes up, what would happen to the predator population? Predator population goes up.





# Introducing ... what you just said

$$N_{n+1} = R\left(1 - \frac{N_n}{K}\right)N_n + N_n - CN_nP_n$$
Existing Prey Population

Growth of Prey Population

Gets Pulled Down by Predators

What about the predator population?





### Hello Predators!

$$N_{n+1} = R\left(1 - \frac{N_n}{K}\right)N_n + N_n - CN_nP_n$$

$$P_{n+1} = QN_nP_n$$

Growth of Predator Population





# Does this actually work?

$$N_{n+1} = R\left(1 - \frac{N_n}{K}\right)N_n + N_n - CN_nP_n$$

$$P_{n+1} = QN_nP_n$$

Let's plug some stuff in!

Assumptions:

$$K = 100$$

$$R = 1.5$$

$$Q = 0.02$$

$$N_0 = 50$$

$$P = 0.2$$

$$C = 3$$





# Answer Key

| Time Step (n) | N (Prey Population) | P (Predator Density) |
|---------------|---------------------|----------------------|
| 0             | 50.0                | 0.20                 |
| 1             | 57.5                | 0.20                 |
| 2             | 59.7                | 0.23                 |
| 3             | 54.6                | 0.27                 |
| 4             | 47.6                | 0.29                 |
| 5             | 43.6                | 0.28                 |
| 6             | 43.9                | 0.24                 |
| 7             | 49.2                | 0.21                 |
| 8             | 55.7                | 0.21                 |
| 9             | 57.6                | 0.23                 |
| 10            | 54.5                | 0.26                 |



#### Goals:

- Play with a Predator-Prey Model using Netlogo (free online software!)
- Have some free-wheeling inquiry-based fun





### Computers: An Easier Way to Model



- Go to website:
   ccl.northwestern.edu/netlogo/
- Download the program
- Pay attention to what folder the program downloads into. Then put the file

Bacteria Protozoa Predation.nlogo in the same folder





# Open the Model



- Run Netlogo
- Go to File → Open
- Find the Bacteria
   Protozoa file
- Select Open







- Check it out!
- To run ...

Press the Setup button







- Check it out!
- To run ...

Press the Setup button
Press the Go button







- Check it out!
- To run ...

Press the Setup button
Press the Go button
And watch what
happens!







- Check it out!
- To run ...

Press the Setup button
Press the Go button
And watch what
happens!

Oh my.





# Background on the Model



- Select the Information tab, and read about this model
- Then work through the worksheet





# Need More Challenge?

```
Bacteria Protozoa Predation - NetLogo {/home/kmoran}
 File Edit Tools Zoom Tabs Help
Interface Information Procedures
Find... Check Procedures • I I Indent automatically
blobals [SOM] -- keep track of how much SOM there is
 breed [hacteria hacterium]
 turtles-own [energy]
patches-own [countdown]
                              :: both protozoa and bacteria have energy
   ask patches [ set poolor black ]
   :; check SOM? switch.
:; if it is true, then SOM grows and the bacteria eat it
   if it false, then the bacteria don't need to eat
if SOM? [
       set countdown random SOM-replenish-time :: initialize SOM grow clocks randomly
   set-default-shape bacteria "egg"
   create-bacteria initial-number-bacteria :: create the bacteria, them initialize their variables
     set size 1.5 ;; easier to see
set label-color blue - 2
set energy random (2 * bacterium-gain-from-food)
   set-default-shape protozoa "monster"
   create-protozoa initial-number-protozoa :: create the protozoa, then initialize their variables
     set color red
     set energy random (2 * protozoan-gain-from-food)
     setxy random-xcor random-ycor
   update-plot
  o go
if not any? turtles [ stop ]
ask bacteria [
```

- Click on the Procedures tab
- See the computer codes that make the model work
- Tutorial available on the Netlogo website





# Looking for More?

 Check out our modules on quantifying biodiversity and measuring a forest!







### Sources

- Charles J. Krebs. *Ecology: The Experimental Analysis of Distribution and Abundance*. Harper and Row Publishers, New York, second edition, 1978.
- Douglas Mooney & Randall Swift. *A Course in Mathematical Modeling*. The Mathematical Association of America, 1999.
- Netlogo copyright 1997 Uri Wilensky. See http://ccl.northwestern.edu/netlogo/models/WolfSheepPredation for terms of use.





#### For this Module & More:

- Website:
  - www.nimbios.org
- See what we're all about
- Sign up for our bimonthly email newsletter
- Check our blog







