

The Gravitational Theory of the Midges

Dan Gorbonos

National Institute for Modeling Biological Systems (NIMBioS)

University of Tennessee, Knoxville

February 20, 2025

Short range interactions

Flocks

Schools

Herds

Herd behavior

Long range interactions

Flying insect swarms

Short range interactions

Long range interactions

Schools

Flying insect swarms

Herds

Herd behavior

Flocking - mainly short range interactions

Swarming - mainly long range interactions

Area of repulsion

A simulated animal ()
tries to maintain a spherical
area of personal space by
avoiding collision with other
animals entering the area.

Area of orientation

The simulated animal will try to orient itself and move in the same direction as other animals in this region.

Area of attraction

The animal will try to move toward other animals in this region, encouraging group formation and cohesion.

Sources: fain D. Couzin; Journal of Theoretical Biology

The Midges

The midges (Chironomidae)

- Non-biting midges
- Only male swarm (mating ritual)
- Length 5 mm

- How many? 10-10,000
- Where ? stream edges
- When ? dawn and dusk

The lab (Stanford U.):

Nick Ouellette - Pl

James Puckett

Rui Ni

In the lab (Stanford U.):

Nick Ouellette - PI

James Puckett

Rui Ni

The midges (Chironomidae)

- Non-biting midges
- Only male swarm (mating ritual)
- Length 5 mm

	Nature	Lab
How many?	10-10,000	1-100
• Where ?	stream edges	Black felt "swarm markers"
• When?	dawn and dusk	Overhead light source – ON/OFF

In the Lab (Stanford U.): Trajectories of midges vs. time

Method:

- High-speed stereoimaging using three synchronized cameras (100 fps)
- Automated motion tracking algorithm

What are the forces that keep the swarm cohesive?

10,000-1,000,000 stars

Size: 100-300 light

years

The oldest objects in the universe

The building blocks of the galaxies

In the galaxy – 200 billion stars

Construction waste:

ca. 150 clusters around the galaxy

M87 Galaxy

15,000 Globular clusters!

What are the forces that keep the cluster cohesive?

Newton's law of universal gravitation

gravitational pull between masses

$$\frac{Gm_1m_2}{r^2}$$

A simulation of the dynamics of a globular cluster

ca. 6000 stars

https://www.youtube.com/watch?v=_mr9y4F6ME4

gravitational pull between masses

$$\frac{Gm_1m_2}{r^2}$$

The model of the interaction in the swarm – acoustic "gravity"

gravitational pull between masses

$$\frac{Gm_1m_2}{r^2}$$

How can we test this hypothesis?

 What will happen when a ball is dropped in a tunnel that passes through the center of the

Earth?

Gauss's law for $1/r^2$ forces :

$$\oint \vec{F} \cdot d\vec{A} = -4\pi GM$$

$$F(r) \cdot A = -4\pi G \rho \cdot V$$

$$F(r) \sim V/A \sim r^3/r^2 \sim r$$

Isotropic Harmonic Oscillator (restoring and linear in \overrightarrow{r})

$$\overrightarrow{a} \propto \overrightarrow{F}$$
 =-k \overrightarrow{r}

What will happen when a ball is dropped in a tunnel that passes through the center of the Earth?

$$\vec{a} \propto \vec{F} = -k\vec{r}$$

The Density Profile

 R_s - The radius of the star cluster/swarm

Distributions of velocities and accelerations

Simulation

And more:

- Virial theorem
- Velocity curve profile
- Pair formation

:

Summary

There is a similarity between globular star clusters and midge swarms, stemming from a similar force between their constituents.

- The connection between phenomena allows us to learn about one from the other.
- Astrophysics in the lab
- Universality of the mathematical description

Thank You

Based on:

- <u>D. Gorbonos</u>, James G. Puckett, Kasper van der Vaart, Michael Sinhuber, N. T. Ouellette & N. S. Gov, Pair formation in Insect Swarms Driven by Adaptive Long-range Interactions, J. R. Soc. Interface.17 2020 20200367
- <u>D. Gorbonos</u>, M. Sinhuber, J. G. Puckett, N. T.
 Ouellette & N. S. Gov, Similarities between Insect
 Swarms and Globular Clusters, Physical Review
 Research 2:013271, 2020
- <u>D. Gorbonos</u> & N. S. Gov, Stable Swarming Using Adaptive Long-range Interactions, Phys. Rev. E 95:042405, 2017
- <u>D. Gorbonos</u>, R. Ianconescu, J. G. Puckett, R. Ni, N. T. Ouellette & N. S. Gov, Long-range Acoustic Interactions in Insect Swarms: An Adaptive Gravity Model, New Journal of Physics 18, 2016

